Search results
Results From The WOW.Com Content Network
The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kasimir Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]
In these cases the polarization energy E pol associated with ions on polar lattice sites may be included in the Born–Haber cycle. As an example, one may consider the case of iron-pyrite FeS 2 . It has been shown that neglect of polarization led to a 15% difference between theory and experiment in the case of FeS 2 , whereas including it ...
"[Using] the Born–Haber cycle to estimate ... the heat of formation... can be used to determine whether a hypothetical compound is stable." However, "a negative formation enthalpy does not automatically imply the existence of a hypothetical compound." The method predicts that NaCl is stable but NeCl is not.
Ionic compounds: Born–Haber cycle ... NaCl −407.27 Sodium chloride: Solid NaCl −411.12 Sodium chloride: Liquid NaCl −385.92 Sodium chloride: Gas
In some reactions between highly reactive metals (usually from Group 1 or Group 2) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, [16] a process thermodynamically understood using the Born–Haber cycle. [17] Salts are formed by salt-forming reactions. A base and an acid, e.g., NH 3 + HCl → ...
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
The further away from the nucleus the weaker the shield. The Born–Landé equation gives a reasonable fit to the lattice energy of, e.g., sodium chloride, where the calculated (predicted) value is −756 kJ/mol, which compares to −787 kJ/mol using the Born–Haber cycle.
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.