Search results
Results From The WOW.Com Content Network
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either exactly or inexactly. Here is an example gradient method that uses a line search in step 5:
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
The gradient thus does not vanish in arbitrarily deep networks. Feedforward networks with residual connections can be regarded as an ensemble of relatively shallow nets. In this perspective, they resolve the vanishing gradient problem by being equivalent to ensembles of many shallow networks, for which there is no vanishing gradient problem. [17]
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Most problems can be formulated in terms of a search space and target in several different ways. For example, for the traveling salesman problem a solution can be a route visiting all cities and the goal is to find the shortest route. But a solution can also be a path, and being a cycle is part of the target.