When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    When only the magnitude and direction of the vector matter, and the particular initial or terminal points are of no importance, the vector is called a free vector. The distinction between bound and free vectors is especially relevant in mechanics, where a force applied to a body has a point of contact (see resultant force and couple).

  3. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Historically, vectors were introduced in geometry and physics (typically in mechanics) for quantities that have both a magnitude and a direction, such as displacements, forces and velocity. Such quantities are represented by geometric vectors in the same way as distances , masses and time are represented by real numbers .

  4. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    Maxwell's equations allow us to use a given set of initial and boundary conditions to deduce, for every point in Euclidean space, a magnitude and direction for the force experienced by a charged test particle at that point; the resulting vector field is the electric field. A gravitational field generated by any massive object is also a vector ...

  7. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane. The angle, usually represented as θ or φ (the Greek letter phi ), is measured as the offset from the line collinear with the x -axis in the positive direction; the angle is typically reduced to lie ...

  8. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Integrating this cross product over the whole surface results in a vector whose magnitude measures the overall circulation of F around S, and whose direction is at right angles to this circulation. The above formula says that the curl of a vector field at a point is the infinitesimal volume density of this "circulation vector" around the point.

  9. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    The unit vectors appropriate to spherical symmetry are: ^, the direction in which the radial distance from the origin increases; ^, the direction in which the angle in the x-y plane counterclockwise from the positive x-axis is increasing; and ^, the direction in which the angle from the positive z axis is increasing.