When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The backward Euler method is an implicit method, meaning that we have to solve an equation to find y n+1. One often uses fixed-point iteration or (some modification of) the Newton–Raphson method to achieve this.

  6. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    If instead one performed Newton-Raphson iterations beginning with an estimate of 10, it would take two iterations to get to 3.66, matching the hyperbolic estimate. For a more typical case like 75, the hyperbolic estimate of 8.00 is only 7.6% low, and 5 Newton-Raphson iterations starting at 75 would be required to obtain a more accurate result.

  7. Joseph Raphson - Wikipedia

    en.wikipedia.org/wiki/Joseph_Raphson

    It contains a method, now known as the Newton–Raphson method, for approximating the roots of an equation. Isaac Newton had developed a very similar formula in his Method of Fluxions, written in 1671, but this work would not be published until 1736, nearly 50 years after Raphson's Analysis. However, Raphson's version of the method is simpler ...

  8. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.