Search results
Results From The WOW.Com Content Network
In common presentations of Dijkstra's algorithm, initially all nodes are entered into the priority queue. This is, however, not necessary: the algorithm can start with a priority queue that contains only one item, and insert new items as they are discovered (instead of doing a decrease-key, check whether the key is in the queue; if it is ...
Chen et al. [11] examined priority queues specifically for use with Dijkstra's algorithm and concluded that in normal cases using a d-ary heap without decrease-key (instead duplicating nodes on the heap and ignoring redundant instances) resulted in better performance, despite the inferior theoretical performance guarantees.
Examples of such problems are Prim's minimal-spanning-tree algorithm and Dijkstra's shortest-path algorithm. Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods.
That is, if there is a sorting algorithm which can sort in O(S) time per key, where S is some function of n and word size, [22] then one can use the given procedure to create a priority queue where pulling the highest-priority element is O(1) time, and inserting new elements (and deleting elements) is O(S) time.
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
In Dijkstra's algorithm for the shortest path problem, vertices of a given weighted graph are extracted in increasing order by their distance from the starting vertex, and a priority queue is used to determine the closest remaining vertex to the starting vertex. Therefore, in this application, the priority queue operations are monotonic.
The key idea behind the speedup over a conventional version of Dijkstra's algorithm is that the sequence of bottleneck distances to each vertex, in the order that the vertices are considered by this algorithm, is a monotonic subsequence of the sorted sequence of edge weights; therefore, the priority queue of Dijkstra's algorithm can be ...
Prim's algorithm has many applications, such as in the generation of this maze, which applies Prim's algorithm to a randomly weighted grid graph. The time complexity of Prim's algorithm depends on the data structures used for the graph and for ordering the edges by weight, which can be done using a priority queue. The following table shows the ...