When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, π radians, or a half-turn). It only has one line of symmetry (reflection symmetry).

  3. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    If one considers the upper half circle as the graph of the function () =, then x = 0 is a critical point with critical value 1 due to the derivative being equal to 0, and x = ±1 are critical points with critical value 0 due to the derivative being undefined.

  4. Witch of Agnesi - Wikipedia

    en.wikipedia.org/wiki/Witch_of_Agnesi

    The witch of Agnesi (curve MP) with labeled points An animation showing the construction of the witch of Agnesi. To construct this curve, start with any two points O and M, and draw a circle with OM as diameter. For any other point A on the circle, let N be the point of intersection of the secant line OA and the tangent line at M.

  5. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc. The circle has been known since before the beginning of recorded history.

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  9. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    An osculating circle Osculating circles of the Archimedean spiral, nested by the Tait–Kneser theorem. "The spiral itself is not drawn: we see it as the locus of points where the circles are especially close to each other." [1] An osculating circle is a circle that best approximates the curvature of a curve at a specific point.