When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. A semicircle can be used to construct the arithmetic and geometric means of two lengths using straight-edge and compass.

  3. Epicycloid - Wikipedia

    en.wikipedia.org/wiki/Epicycloid

    The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.

  4. Limaçon - Wikipedia

    en.wikipedia.org/wiki/Limaçon

    Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = (⁠ 1 / 2 ⁠, 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.

  5. Cardioid - Wikipedia

    en.wikipedia.org/wiki/Cardioid

    A detailed consideration shows: The midpoints of the circles lie on the perimeter of the fixed generator circle. (The generator circle is the inverse curve of the parabola's directrix.) This property gives rise to the following simple method to draw a cardioid: Choose a circle and a point on its perimeter,

  6. Cycloid - Wikipedia

    en.wikipedia.org/wiki/Cycloid

    A cycloid generated by a rolling circle. In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

  7. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.

  8. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]

  9. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.