When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).

  4. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  5. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.

  6. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In spherical coordinates in N dimensions, with the parametrization x = rθ ∈ R N with r representing a positive real radius and θ an element of the unit sphere S N−1, = + + where Δ S N−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian.

  7. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple (r, θ, z). [8] Spherical coordinates take this a step further by converting the pair of cylindrical coordinates (r, z) to polar coordinates (ρ, φ) giving a triple (ρ, θ, φ). [9]

  8. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    As is the case with spherical coordinates, Laplaces equation may be solved by the method of separation of variables to yield solutions in the form of oblate spheroidal harmonics, which are convenient to use when boundary conditions are defined on a surface with a constant oblate spheroidal coordinate (See Smythe, 1968).

  9. Tensor operator - Wikipedia

    en.wikipedia.org/wiki/Tensor_operator

    In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors.A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics.