Search results
Results From The WOW.Com Content Network
More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, [4] which makes the theorem easier to use and apply, [5] even though its importance is generally considered to be secondary to that of ...
A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]
List of algorithm general topics; List of computability and complexity topics; Lists for computational topics in geometry and graphics List of combinatorial computational geometry topics; List of computer graphics and descriptive geometry topics; List of numerical computational geometry topics; List of computer vision topics
This is a list of algebraic geometry topics, by Wikipedia page. Classical topics in projective geometry. Affine space; Projective space; Projective line, cross-ratio;
corollary A proposition that follows directly from another proposition or theorem with little or no additional proof. correspondence theory of truth The philosophical doctrine that the truth or falsity of a statement is determined by how it relates to the world and whether it accurately describes (corresponds with) that world. counterexample 1.
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
Berger–Kazdan comparison theorem (Riemannian geometry) Bernstein's theorem (approximation theory) Bernstein's theorem (functional analysis) Berry–Esséen theorem (probability theory) Bertini's theorem (algebraic geometry) Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics)
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Geometry is one of the oldest mathematical sciences.