Ads
related to: logistic differential equation formula
Search results
Results From The WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.
The difference equation is a discrete version of the logistic differential equation, ... the case of r between 3 and 1 + √ 6, and given by the same formula. ...
Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.
Logistic equation can refer to: Logistic map, a nonlinear recurrence relation that plays a prominent role in chaos theory; Logistic regression, a regression technique that transforms the dependent variable using the logistic function; Logistic differential equation, a differential equation for population dynamics proposed by Pierre François ...
If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in the example below.
Toggle Formula subsection. 2.1 Properties. 2.2 Derivation. 3 Example uses. 4 Applications. ... is the limiting case of the generalized logistic differential equation ...
The differential equations for these examples include *parameters* that may affect the output of the equations. Changing the pendulum's mass and length will affect its oscillation frequency, changing the magnitude of injected current into a neuron may transition the membrane potential from resting to spiking, and the long-term viral load in the ...