When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  3. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space , the definite article is used, so the Euclidean plane refers to the whole space.

  4. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Three distinct planes, no pair of which are parallel, can either meet in a common line, meet in a unique common point, or have no point in common. In the last case, the three lines of intersection of each pair of planes are mutually parallel. A line can lie in a given plane, intersect that plane in a unique point, or be parallel to the plane.

  6. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...

  7. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    To define a spherical coordinate system, one must designate an origin point in space, O, and two orthogonal directions: the zenith reference direction and the azimuth reference direction. These choices determine a reference plane that is typically defined as containing the point of origin and the x– and y–axes , either of which may be ...

  8. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]

  9. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    Their cross product is a normal vector to that plane, and any vector orthogonal to this cross product through the initial point will lie in the plane. [1] This leads to the following coplanarity test using a scalar triple product: Four distinct points, x 1, x 2, x 3, x 4, are coplanar if and only if,