When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Recommender system - Wikipedia

    en.wikipedia.org/wiki/Recommender_system

    Typically, research on recommender systems is concerned with finding the most accurate recommendation algorithms. However, there are a number of factors that are also important. Diversity – Users tend to be more satisfied with recommendations when there is a higher intra-list diversity, e.g. items from different artists. [96] [97]

  3. Matrix factorization (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization...

    Matrix factorization algorithms work by decomposing the user-item interaction matrix into the product of two lower dimensionality rectangular matrices. [1] This family of methods became widely known during the Netflix prize challenge due to its effectiveness as reported by Simon Funk in his 2006 blog post, [ 2 ] where he shared his findings ...

  4. Cold start (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Cold_start_(recommender...

    The cold start problem is a well known and well researched problem for recommender systems.Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (e-commerce, films, music, books, news, images, web pages) that are likely of interest to the user.

  5. Ranking (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(information...

    Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.

  6. Collaborative filtering - Wikipedia

    en.wikipedia.org/wiki/Collaborative_filtering

    As in the personalized recommendation scenario, the introduction of new users or new items can cause the cold start problem, as there will be insufficient data on these new entries for the collaborative filtering to work accurately. In order to make appropriate recommendations for a new user, the system must first learn the user's preferences ...

  7. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Tie-Yan Liu of Microsoft Research Asia has analyzed existing algorithms for learning to rank problems in his book Learning to Rank for Information Retrieval. [1] He categorized them into three groups by their input spaces, output spaces, hypothesis spaces (the core function of the model) and loss functions : the pointwise, pairwise, and ...

  8. Knowledge-based recommender system - Wikipedia

    en.wikipedia.org/wiki/Knowledge-based...

    Knowledge-based recommender systems are often conversational, i.e., user requirements and preferences are elicited within the scope of a feedback loop.A major reason for the conversational nature of knowledge-based recommender systems is the complexity of the item domain where it is often impossible to articulate all user preferences at once.

  9. Slope One - Wikipedia

    en.wikipedia.org/wiki/Slope_One

    Examples of binary item-based collaborative filtering include Amazon's item-to-item patented algorithm [12] which computes the cosine between binary vectors representing the purchases in a user-item matrix. Being arguably simpler than even Slope One, the Item-to-Item algorithm offers an interesting point of reference. Consider an example.