Search results
Results From The WOW.Com Content Network
Preclinical imaging is the visualization of living animals for research purposes, [1] such as drug development. Imaging modalities have long been crucial to the researcher in observing changes, either at the organ, tissue, cell, or molecular level, in animals responding to physiological or environmental changes.
Optoacoustic imaging in general, and MSOT in particular, have been applied to various analyses of animal models, including imaging of organs, pathology, functional processes and bio-distribution. This range of applications demonstrates the flexibility of MSOT, which reflects the range of contrast agents available.
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy , imaging probes, and spectroscopy .
High resolution 99m Tc-MDP mouse scan acquired with a stationary SPECT system: animated image of rotating maximum intensity projections.. Preclinical or small-animal Single Photon Emission Computed Tomography is a radionuclide based molecular imaging modality for small laboratory animals [1] (e.g. mice and rats).
Medical imaging is a range of imaging techniques and technologies that enables clinicians to visualize the internal structures of the human body. It aids in diagnosing, treating, and monitoring various medical conditions, thus allowing healthcare professionals to obtain detailed and non-invasive images of organs, tissues, and physiological ...
In drug development, preclinical development (also termed preclinical studies or nonclinical studies) is a stage of research that begins before clinical trials (testing in humans) and during which important feasibility, iterative testing and drug safety data are collected, typically in laboratory animals.
A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.