Search results
Results From The WOW.Com Content Network
Preclinical imaging is the visualization of living animals for research purposes, [1] such as drug development. Imaging modalities have long been crucial to the researcher in observing changes, either at the organ, tissue, cell, or molecular level, in animals responding to physiological or environmental changes.
In quantum optics, the Jaynes–Cummings model (sometimes abbreviated JCM) is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity (or a bosonic field), with or without the presence of light (in the form of a bath of electromagnetic radiation that can cause spontaneous emission ...
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy , imaging probes, and spectroscopy .
The conventional method of performing laser-induced fluorescence, as well as other types of spectroscopic measurements, such as infrared, ultraviolet-visible spectroscopy, phosphorescence, etc., is to use a small transparent laboratory vessel, a cuvette, to contain the sample to be analyzed. [citation needed]
In drug development, preclinical development (also termed preclinical studies or nonclinical studies) is a stage of research that begins before clinical trials (testing in humans) and during which important feasibility, iterative testing and drug safety data are collected, typically in laboratory animals.
Molecular imaging is a field of medical imaging that focuses on imaging molecules of medical interest within living patients. This is in contrast to conventional methods for obtaining molecular information from preserved tissue samples, such as histology. Molecules of interest may be either ones produced naturally by the body, or synthetic ...
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.
Field ion microscope image of the end of a sharp platinum needle. Each bright spot is a platinum atom. The field-ion microscope (FIM) was invented by Müller in 1951. [1] It is a type of microscope that can be used to image the arrangement of atoms at the surface of a sharp metal tip.