Search results
Results From The WOW.Com Content Network
An RLC circuit is an electrical circuit consisting of a ... In the case of the series RLC circuit, the damping factor is given by ... By the quadratic formula, ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
A high damping factor (which requires low output impedance at the amplifier output) very rapidly damps unwanted cone movements induced by the mechanical resonance of the speaker, acting as the equivalent of a "brake" on the voice coil motion (just as a short circuit across the terminals of a rotary electrical generator will make it very hard to ...
The circuit contains: a triode, a resistor R, a capacitor C, a coupled inductor-set with self inductance L and mutual inductance M. In the serial RLC circuit there is a current i, and towards the triode anode ("plate") a current i a, while there is a voltage u g on the triode control grid. The Van der Pol oscillator is forced by an AC voltage ...
= is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
The effect of varying damping ratio on a second-order system. The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator ...
Here, the damping ratio is always equal to one. There should be no oscillation about the steady-state value in the ideal case. Overdamped An overdamped response is the response that does not oscillate about the steady-state value but takes longer to reach steady-state than the critically damped case. Here damping ratio is greater than one.