Search results
Results From The WOW.Com Content Network
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist.
The critical point remains a point on the surface even on a 3D phase diagram. An orthographic projection of the 3D p–v–T graph showing pressure and temperature as the vertical and horizontal axes collapses the 3D plot into the standard 2D pressure–temperature diagram. When this is done, the solid–vapor, solid–liquid, and liquid ...
As temperature and pressure increase along the coexistence curve, the gas becomes more like a liquid and the liquid becomes more like a gas. At the critical point, the two are the same. So for temperatures above the critical temperature (126.2 K), there is no phase transition; as pressure increases the gas gradually transforms into something ...
The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: [1] = where the actual temperature and critical temperature are expressed in absolute temperature scales (either Kelvin or Rankine). Both the reduced temperature and the reduced pressure are often used in thermodynamical formulas like the Peng ...
Once the constants and are experimentally determined for a given substance, the van der Waals equation can be used to predict attributes like the boiling point at any given pressure, and the critical point (defined by pressure and temperature such that the substance cannot be liquefied either when > no matter how low the temperature, or when ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
The above equation can be used to plot the Rayleigh line on a Mach number versus ΔS graph, but the dimensionless enthalpy, H, versus ΔS diagram, is more often used. The dimensionless enthalpy equation is shown below with an equation relating the static temperature with its value at the choke location for a calorically perfect gas where the ...