When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Critical point (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point...

    One example is the liquid–vapor critical point, the end point of the pressuretemperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone.

  3. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    The critical point remains a point on the surface even on a 3D phase diagram. An orthographic projection of the 3D p–v–T graph showing pressure and temperature as the vertical and horizontal axes collapses the 3D plot into the standard 2D pressuretemperature diagram. When this is done, the solid–vapor, solid–liquid, and liquid ...

  4. Redlich–Kwong equation of state - Wikipedia

    en.wikipedia.org/wiki/Redlich–Kwong_equation_of...

    p is the gas pressure; R is the gas constant, T is temperature, V m is the molar volume (V/n), a is a constant that corrects for attractive potential of molecules, and; b is a constant that corrects for volume. The constants are different depending on which gas is being analyzed. The constants can be calculated from the critical point data of ...

  5. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    Once the constants and are experimentally determined for a given substance, the van der Waals equation can be used to predict attributes like the boiling point at any given pressure, and the critical point (defined by pressure and temperature such that the substance cannot be liquefied either when > no matter how low the temperature, or when ...

  6. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.

  7. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  8. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    For an ideal gas the equation of state can be written as =, where R is the ideal gas constant.The differential change of the chemical potential between two states of slightly different pressures but equal temperature (i.e., dT = 0) is given by = = = ⁡, where ln p is the natural logarithm of p.

  9. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...