Search results
Results From The WOW.Com Content Network
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .
In mathematics, minimum polynomial extrapolation is a sequence transformation used for convergence acceleration of vector sequences, due to Cabay and Jackson. [1] While Aitken's method is the most famous, it often fails for vector sequences. An effective method for vector sequences is the minimum polynomial extrapolation.
Pages in category "Articles with example MATLAB/Octave code" The following 40 pages are in this category, out of 40 total. This list may not reflect recent changes .
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation , which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing ...
The Theory of Functional Connections (TFC) is a mathematical framework specifically developed for functional interpolation.Given any interpolant that satisfies a set of constraints, TFC derives a functional that represents the entire family of interpolants satisfying those constraints, including those that are discontinuous or partially defined.
Methods based on Richardson extrapolation, [14] such as the Bulirsch–Stoer algorithm, [15] [16] are often used to construct various methods of different orders. Other desirable features include: dense output: cheap numerical approximations for the whole integration interval, and not only at the points t 0, t 1, t 2, ...
The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.