When.com Web Search

  1. Ads

    related to: figurate number theory examples questions printable grade 2

Search results

  1. Results From The WOW.Com Content Network
  2. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    a number represented as a discrete r-dimensional regular geometric pattern of r-dimensional balls such as a polygonal number (for r = 2) or a polyhedral number (for r = 3). a member of the subset of the sets above containing only triangular numbers, pyramidal numbers , and their analogs in other dimensions.

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758 Extravagant numbers

  4. Polygonal number - Wikipedia

    en.wikipedia.org/wiki/Polygonal_number

    In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...

  5. Centered polygonal number - Wikipedia

    en.wikipedia.org/wiki/Centered_polygonal_number

    The difference of the n-th and the (n+1)-th consecutive centered k-gonal numbers is k(2n+1). The n-th centered k-gonal number is equal to the n-th regular k-gonal number plus (n-1) 2. Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal.

  6. Template:Figurate numbers - Wikipedia

    en.wikipedia.org/wiki/Template:Figurate_numbers

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  7. Gnomon (figure) - Wikipedia

    en.wikipedia.org/wiki/Gnomon_(figure)

    This gnomonic technique also provides a proof that the sum of the first n odd numbers is n 2; the figure illustrates 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2. First five terms of Nichomachus's theorem. Applying the same technique to a multiplication table gives the Nicomachus theorem, proving that each squared triangular number is a sum of ...

  8. Centered polyhedral number - Wikipedia

    en.wikipedia.org/wiki/Centered_polyhedral_number

    In mathematics, the centered polyhedral numbers are a class of figurate numbers, each formed by a central dot, surrounded by polyhedral layers with a constant number of edges. The length of the edges increases by one in each additional layer.

  9. List of recreational number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_recreational...

    This is a list of recreational number theory topics (see number theory, recreational mathematics). Listing here is not pejorative: many famous topics in number theory have origins in challenging problems posed purely for their own sake. See list of number theory topics for pages dealing with aspects of number theory with more consolidated theories.