Ad
related to: symmetry inversion
Search results
Results From The WOW.Com Content Network
Inversion symmetry plays a major role in the properties of materials, as also do other symmetry operations. [2] Some molecules contain an inversion center when a point exists through which all atoms can reflect while retaining symmetry. In many cases they can be considered as polyhedra, categorized by their coordination number and bond angles.
This is called circle inversion or plane inversion. The inversion taking any point P (other than O ) to its image P ' also takes P ' back to P , so the result of applying the same inversion twice is the identity transformation which makes it a self-inversion (i.e. an involution).
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
If k = m, then such a transformation is known as a point reflection, or an inversion through a point. On the plane (m = 2), a point reflection is the same as a half-turn (180°) rotation; see below. Antipodal symmetry is an alternative name for a point reflection symmetry through the origin. [14]
Applying this transformation twice on a 4-vector gives a transformation of the same form. The new symmetry of 'inversion' is given by the 3-tensor . This symmetry becomes Poincaré symmetry if we set = When = the second condition requires that is an orthogonal matrix. This transformation is 1-1 meaning that each point is mapped to a unique ...
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
In physics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection ):
In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have inversion symmetry. [2] Point reflection is a similar term used in geometry.