When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DNA gyrase - Wikipedia

    en.wikipedia.org/wiki/DNA_gyrase

    DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases [1] that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase [2] or by helicase in front of the progressing replication fork.

  3. Nick (DNA) - Wikipedia

    en.wikipedia.org/wiki/Nick_(DNA)

    LigA is a relevant example as it is structurally similar to a clade of enzymes found across all types of bacteria. [7] Ligases have a metal binding site which is capable of recognizing nicks in DNA. The ligase forms a DNA-adenylate complex, assisting recognition. [8] With human DNA ligase, this forms a crystallized complex.

  4. DNA supercoil - Wikipedia

    en.wikipedia.org/wiki/DNA_supercoil

    Negative supercoils favor local unwinding of the DNA, allowing processes such as transcription, DNA replication, and recombination. Negative supercoiling is also thought to favour the transition between B-DNA and Z-DNA , and moderate the interactions of DNA binding proteins involved in gene regulation .

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    With DNA in its "relaxed" state, a strand usually circles the axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. [43] If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together.

  6. Nucleoid - Wikipedia

    en.wikipedia.org/wiki/Nucleoid

    A hindrance in the free rotation of DNA might arise due to a topological constraint, causing the DNA in front of RNAP to become over-twisted (positively supercoiled) and the DNA behind RNAP would become under-twisted (negatively supercoiled). It has been found that a topological constraint is not needed because RNAP generates sufficient torque ...

  7. Genetic transformation - Wikipedia

    en.wikipedia.org/wiki/Genetic_transformation

    The surface of bacteria such as E. coli is negatively charged due to phospholipids and lipopolysaccharides on its cell surface, and the DNA is also negatively charged. One function of the divalent cation therefore would be to shield the charges by coordinating the phosphate groups and other negative charges, thereby allowing a DNA molecule to ...

  8. Restriction modification system - Wikipedia

    en.wikipedia.org/wiki/Restriction_modification...

    The restriction modification system (RM system) is found in bacteria and archaea, and provides a defense against foreign DNA, such as that borne by bacteriophages.. Bacteria have restriction enzymes, also called restriction endonucleases, which cleave double-stranded DNA at specific points into fragments, which are then degraded further by other endonucleases.

  9. Non B-DNA - Wikipedia

    en.wikipedia.org/wiki/Non_B-DNA

    A-DNA is a form of DNA that occurs when the DNA is in a dehydrated state or is bound to certain proteins, and it has a shorter and wider helix than B-DNA. The helix of A-DNA is also tilted and compressed compared to B-DNA. A-DNA is believed to play a role in certain biological processes, such as DNA replication and gene expression.