Search results
Results From The WOW.Com Content Network
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...
The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.
In addition, Newton had formulated, in Propositions 43–45 of Book 1 [16] and associated sections of Book 3, a sensitive test of the accuracy of the inverse square law, in which he showed that only where the law of force is calculated as the inverse square of the distance will the directions of orientation of the planets' orbital ellipses stay ...
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
Gauss's law has a close mathematical similarity with a number of laws in other areas of physics, such as Gauss's law for magnetism and Gauss's law for gravity. In fact, any inverse-square law can be formulated in a way similar to Gauss's law: for example, Gauss's law itself is essentially equivalent to the Coulomb's law, and Gauss's law for ...
The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force. The LRL vector was essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom, [ 7 ] [ 8 ] before the development of the Schrödinger equation .