Search results
Results From The WOW.Com Content Network
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
As an example to illustrate the process of quasilinearization, we can approximately solve the two-point boundary value problem for the nonlinear node = (), where the boundary conditions are () = and () =.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
Perhaps the most celebrated example is Shizuo Kakutani's 1944 solution of the Dirichlet problem for the Laplace operator using Brownian motion. However, it turns out that for a large class of semi-elliptic second-order partial differential equations the associated Dirichlet boundary value problem can be solved using an Itō process that solves ...
Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...
Pages in category "Boundary value problems" The following 13 pages are in this category, out of 13 total. This list may not reflect recent changes. ...
The problem above is a simple example because it is a single equation with only one dependent variable, and there is one boundary layer in the solution. Harder problems may contain several co-dependent variables in a system of several equations, and/or with several boundary and/or interior layers in the solution.
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]