Search results
Results From The WOW.Com Content Network
The degree of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex). [1] A leaf vertex (also pendant vertex) is a vertex with degree one.
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures. A vertex with degree n − 1 in a graph ...
The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 .
A vertex with deg − (v) = 0 is called a source, as it is the origin of each of its outgoing arcs. Similarly, a vertex with deg + (v) = 0 is called a sink, since it is the end of each of its incoming arcs. The degree sum formula states that, for a directed graph,
where the degree of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...
A biregular graph is a bipartite graph in which there are only two different vertex degrees, one for each set of the vertex bipartition. block 1. A block of a graph G is a maximal subgraph which is either an isolated vertex, a bridge edge, or a 2-connected subgraph. If a block is 2-connected, every pair of vertices in it belong to a common cycle.
The degree d(v) of a vertex v is the number of edges that contain it. H is k-regular if every vertex has degree k. The dual of a uniform hypergraph is regular and vice versa. Two vertices x and y of H are called symmetric if there exists an automorphism such that () =. Two edges