Search results
Results From The WOW.Com Content Network
A distinct group of DNA-binding proteins is the DNA-binding proteins that specifically bind single-stranded DNA. In humans, replication protein A is the best-understood member of this family and is used in processes where the double helix is separated, including DNA replication, recombination, and DNA repair. [123]
DNA is often called double helix. ... during phase T4 DNA synthesis is 1.7 per 10 8 ... of all three proteins in the same cell does trigger reinitiation at many ...
Each nucleosome is composed of a little less than two turns of DNA wrapped around a set of eight proteins called histones, which are known as a histone octamer. Each histone octamer is composed of two copies each of the histone proteins H2A, H2B, H3, and H4. DNA must be compacted into nucleosomes to fit within the cell nucleus. [2]
DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. [ 3 ] [ 4 ] [ 5 ] Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA , because it exposes more functional groups that identify a base pair .
In mammals, key architectural proteins include: Histones: DNA is wrapped around histones to form nucleosomes, which are basic units of chromatin structure. Each nucleosome consists of 8 histone protein subunits, around which roughly 147 DNA base pairs are wrapped in 1.67 left-handed turns.
All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide , each of which contains a pentose sugar ( ribose or deoxyribose ), a phosphate group, and a nucleobase . [ 16 ]
The shape of the protein is determined by the sequence of amino acids along its chain and it is this shape that, in turn, determines what the protein does. [6] For example, some proteins have parts of their surface that perfectly match the shape of another molecule, allowing the protein to bind to this molecule very tightly. Other proteins are ...
Due to the tight association of histone proteins to DNA, eukaryotic cells have proteins that are designed to remodel histones ahead of the replication fork, in order to allow smooth progression of the replisome. [137] There are also proteins involved in reassembling histones behind the replication fork to reestablish the nucleosome conformation ...