Search results
Results From The WOW.Com Content Network
The electrical length of an antenna, like a transmission line, is its length in wavelengths of the current on the antenna at the operating frequency. [1] [12] [13] [4]: p.91–104 An antenna's resonant frequency, radiation pattern, and driving point impedance depend not on its physical length but on its electrical length. [14]
Friis' original idea behind his transmission formula was to dispense with the usage of directivity or gain when describing antenna performance. In their place is the descriptor of antenna capture area as one of two important parts of the transmission formula that characterizes the behavior of a free-space radio circuit.
For a typical k of about 0.95, the above formula for the corrected antenna length can be written, for a length in meters as 143 / f , or a length in feet as 468 / f where f is the frequency in megahertz. [18]
Exponentiation of both side leads to the formula for the equivalent radius. The formula for the equivalent radius provides consistent results. If the conductor cross-section dimensions are scaled by a factor , the equivalent radius is scaled by | |. Also, the equivalent radius of a cylindrical conductor is equal to the radius of the conductor.
The frequency dependence of path loss does not come from free space propagation, but rather from receiving antenna capture area frequency dependence. As frequency increases, the directivity of an antenna of a given physical size will increase. In order to keep receiver antenna directivity constant in the formula, the antenna size must be ...
Antenna directivity is the ratio of maximum radiation intensity (power per unit surface) radiated by the antenna in the maximum direction divided by the intensity radiated by a hypothetical isotropic antenna radiating the same total power as that antenna. For example, a hypothetical antenna which had a radiated pattern of a hemisphere (1/2 ...
This will often be a half-wave dipole, a very well understood and repeatable antenna that can be easily built for any frequency. The directive gain of a half-wave dipole with respect to the isotropic radiator is known to be 1.64 and it can be made nearly 100% efficient.
The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a center-fed half-wave dipole antenna in free space, where the total length L is equal to one half wavelength (λ/2). If constructed from thin conductors, the current ...