Search results
Results From The WOW.Com Content Network
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
k. -means++. In data mining, k-means++[1][2] is an algorithm for choosing the initial values (or "seeds") for the k -means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k -means problem—a way of avoiding the sometimes poor clusterings found by the standard ...
Determining the number of clusters in a data set, a quantity often labelled k as in the k -means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k -means, k -medoids and expectation–maximization ...
Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means). Most k-means-type ...
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
The k-medoids problem is a clustering problem similar to k -means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [1] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points labeled ...
k. -medians clustering. In statistics, k-medians clustering[1][2] is a cluster analysis algorithm. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. k -medians is a variation of k -means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead ...
K, or k, is the eleventh letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is kay (pronounced / ˈkeɪ /), plural kays. [1] The letter K usually represents the voiceless velar plosive.