Search results
Results From The WOW.Com Content Network
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.
For a spherically-curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror divided by two. The focal length is positive for a concave mirror, and negative for a convex mirror. In the sign convention used in optical design, a concave mirror has negative radius of curvature, so
Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.
Convex mirror lets motorists see around a corner. Detail of the convex mirror in the Arnolfini Portrait. The passenger-side mirror on a car is typically a convex mirror. In some countries, these are labeled with the safety warning "Objects in mirror are closer than they appear", to warn the driver of the convex mirror's distorting effects on distance perception.
The Houghton telescope or Lurie–Houghton telescope is a design that uses a wide compound positive-negative lens over the entire front aperture to correct spherical aberration of the main mirror. If desired, the two corrector elements can be made with the same type of glass, since the Houghton corrector's chromatic aberration is minimal.
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.
[5] [6] The mirror to be tested is placed vertically in a stand. The Foucault tester is set up at the distance of the mirror's radius of curvature (radius R is twice the focal length.) with the pinhole to one side of the centre of curvature (a short vertical slit parallel to the knife edge can be used instead of the pinhole).