When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The capacitance can be calculated if the geometry of the conductors and the dielectric properties of the insulator between the conductors are known. Capacitance is proportional to the area of overlap and inversely proportional to the separation between conducting sheets. The closer the sheets are to each other, the greater the capacitance.

  3. Electrical length - Wikipedia

    en.wikipedia.org/wiki/Electrical_length

    In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. [1] [2] [3] In other words, it is the length of the conductor measured in wavelengths.

  4. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The signal delay of a wire or other circuit, measured as group delay or phase delay or the effective propagation delay of a digital transition, may be dominated by resistive-capacitive effects, depending on the distance and other parameters, or may alternatively be dominated by inductive, wave, and speed of light effects in other realms.

  5. Parasitic capacitance - Wikipedia

    en.wikipedia.org/wiki/Parasitic_capacitance

    In all inductors, the parasitic capacitance will resonate with the inductance at some high frequency to make the inductor self-resonant; this is called the self-resonant frequency. Above this frequency, the inductor actually has capacitive reactance. The capacitance of the load circuit attached to the output of op amps can reduce their bandwidth.

  6. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    The formula for capacitance in a parallel plate capacitor is written as C = ε A d {\displaystyle C=\varepsilon \ {\frac {A}{d}}} where A {\displaystyle A} is the area of one plate, d {\displaystyle d} is the distance between the plates, and ε {\displaystyle \varepsilon } is the permittivity of the medium between the two plates.

  7. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Capacitance C The capacitance couples voltage to the energy stored in the electric field. It controls how much the bunched-up electrons within each conductor repel, attract, or divert the electrons in the other conductor. By deflecting some of these bunched up electrons, the speed of the wave and its strength (voltage) are both reduced.

  8. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    At a distance x into the line, there is current phasor I(x) traveling through each wire, and there is a voltage difference phasor V(x) between the wires (bottom voltage minus top voltage). If Z 0 {\displaystyle Z_{0}} is the characteristic impedance of the line, then V ( x ) / I ( x ) = Z 0 {\displaystyle V(x)/I(x)=Z_{0}} for a wave moving ...

  9. Delay calculation - Wikipedia

    en.wikipedia.org/wiki/Delay_calculation

    The entire wire capacitance is applied to the gate output, and the delay through the wire itself is ignored. Elmore delay [5] is a simple approximation, often used where speed of calculation is important but the delay through the wire itself cannot be ignored. It uses the R and C values of the wire segments in a simple calculation.