When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anaerobic oxidation of methane - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_oxidation_of_methane

    The overall reactions are: CH 4 + 4 NO 3 − → CO 2 + 4 NO 2 − + 2 H 2 O 3 CH 4 + 8 NO 2 − + 8 H + → 3 CO 2 + 4 N 2 + 10 H 2 O. ANME-2d is shown to be responsible nitrate-driven AOM. [5] The ANME-2d, named Methanoperedens nitroreducens, is able to perform nitrate-driven AOM without a partner organism via reverse methanogenesis with nitrate as the terminal electron acceptor, using genes ...

  3. Methanogenesis - Wikipedia

    en.wikipedia.org/wiki/Methanogenesis

    Some organisms can oxidize methane, functionally reversing the process of methanogenesis, also referred to as the anaerobic oxidation of methane (AOM). Organisms performing AOM have been found in multiple marine and freshwater environments including methane seeps, hydrothermal vents, coastal sediments and sulfate-methane transition zones. [8]

  4. Atmospheric methane removal - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_methane_removal

    Methane has a limited atmospheric lifetime, about 10 years, due to substantial methane sinks. The primary methane sink is atmospheric oxidation, from hydroxyl radicals (~90% of the total sink) and chlorine radicals (0-5% of the total sink). The rest is consumed by methanotrophs and other methane-oxidizing bacteria and archaea in soils (~5%). [7]

  5. Methane emissions - Wikipedia

    en.wikipedia.org/wiki/Methane_emissions

    Methane's GWP 20 of 85 means that a ton of CH 4 emitted into the atmosphere creates approximately 85 times the atmospheric warming as a ton of CO 2 over a period of 20 years. [23] On a 100-year timescale, methane's GWP 100 is in the range of 28–34. Methane emissions are important as reducing them can buy time to tackle carbon emissions. [24] [25]

  6. Peters four-step chemistry - Wikipedia

    en.wikipedia.org/wiki/Peters_four-step_chemistry

    Peters four-step chemistry is a systematically reduced mechanism for methane combustion, named after Norbert Peters, who derived it in 1985. [1] [2] [3] The mechanism reads as [4]

  7. Methanotroph - Wikipedia

    en.wikipedia.org/wiki/Methanotroph

    Some specific methanotrophs can reduce nitrate, [19] nitrite, [20] iron, [21] sulfate, [22] or manganese ions and couple that to methane oxidation without syntrophic partner. Investigations in marine environments revealed that methane can be oxidized anaerobically by consortia of methane oxidizing archaea and sulfate-reducing bacteria .

  8. Methane reformer - Wikipedia

    en.wikipedia.org/wiki/Methane_reformer

    A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane ...

  9. Methane monooxygenase - Wikipedia

    en.wikipedia.org/wiki/Methane_monooxygenase

    Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. [1] Methane monooxygenase belongs to the class of oxidoreductase enzymes (EC 1.14.13.25). There are two forms of MMO: the well-studied soluble form (sMMO) and the particulate form (pMMO). [2]