Search results
Results From The WOW.Com Content Network
Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]
Numerous compounds adopt this geometry, examples being especially numerous for transition metal complexes. The noble gas compound xenon tetrafluoride adopts this structure as predicted by VSEPR theory. The geometry is prevalent for transition metal complexes with d 8 configuration, which includes Rh(I), Ir(I), Pd(II), Pt(II), and Au(III).
This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs. In accordance with the VSEPR (valence-shell electron pair repulsion theory), the bond angles between the electron bonds are arccos(− 1 / 3 ) = 109.47°. For example, methane (CH 4) is a tetrahedral molecule.
Like other chlorosilanes or silanes, silicon tetrachloride reacts readily with water: . SiCl 4 + 2 H 2 O → SiO 2 + 4 HCl. The reaction can be noticed on exposure of the liquid to air, as SiCl 4 vapour produces fumes as it reacts with moisture to give a cloud-like aerosol of silica and hydrochloric acid. [6]
Silicon tetrafluoride or tetrafluorosilane is a chemical compound with the formula Si F 4.This colorless gas is notable for having a narrow liquid range: its boiling point is only 4 °C above its melting point.
Original file (2,225 × 252 pixels, file size: 8 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Structure of xenon oxytetrafluoride, an example of a molecule with the square pyramidal coordination geometry. Square pyramidal geometry describes the shape of certain chemical compounds with the formula ML 5 where L is a ligand. If the ligand atoms were connected, the resulting shape would be that of a pyramid with a square base.
According to VSEPR theory, diethyl ether, methanol, water and oxygen difluoride should all have a bond angle of 109.5 o. [12] Using VSEPR theory, all these molecules should have the same bond angle because they have the same "bent" shape. [12] Yet, clearly the bond angles between all these molecules deviate from their ideal geometries in ...