Search results
Results From The WOW.Com Content Network
Then their state can be read by an encoder to determine the delay. In general a digital delay-line based TDC, [19] also known as tapped delay line, contains a chain of cells (e.g. using D-latches in the figure) with well defined delay times . The start signal propagates through this chain and is successively delayed by each cell.
The [] in these terms are commonly referred to as tap s, based on the structure of a tapped delay line that in many implementations or block diagrams provides the delayed inputs to the multiplication operations. One may speak of a 5th order/6-tap filter, for instance.
A digital delay line (or simply delay line, also called delay filter) is a discrete element in a digital filter, which allows a signal to be delayed by a number of samples. Delay lines are commonly used to delay audio signals feeding loudspeakers to compensate for the speed of sound in air, and to align video signals with accompanying audio ...
On the other hand, discrete-time filters (usually digital filters) based on a tapped delay line employing no feedback are necessarily FIR filters. The capacitors (or inductors) in the analog filter have a "memory" and their internal state never completely relaxes following an impulse (assuming the classical model of capacitors and inductors ...
The adaptive linear combiner (ALC) resembles the adaptive tapped delay line FIR filter except that there is no assumed relationship between the X values. If the X values were from the outputs of a tapped delay line, then the combination of tapped delay line and ALC would comprise an adaptive filter.
One example of an analog delay line is a bucket-brigade device. [1] Other types of delay line include acoustic (usually ultrasonic), magnetostrictive, and surface acoustic wave devices. A series of resistor–capacitor circuits (RC circuits) can be cascaded to form a delay. A long transmission line can also provide a delay element. The delay ...
The power delay profile (PDP) gives the intensity of a signal received through a multipath channel as a function of time delay. The time delay is the difference in travel time between multipath arrivals. The abscissa is in units of time and the ordinate is usually in decibels.
These apparent advantages of the DTC are offset by the need for a higher sampling rate (up to 40 kHz as compared with 6–15 kHz for the FOC) leading to higher switching loss in the inverter; a more complex motor model; and inferior torque ripple. [1] The direct torque method performs very well even without speed sensors. However, the flux ...