Ads
related to: magneto refrigeration
Search results
Results From The WOW.Com Content Network
The first working magnetic refrigerators were constructed by several groups beginning in 1933. Magnetic refrigeration was the first method developed for cooling below about 0.3 K (the lowest temperature attainable before magnetic refrigeration, by pumping on 3 He vapors).
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil that has been cryogenically cooled to a temperature below its superconducting critical temperature. This use of superconducting coils to store magnetic energy was invented by M. Ferrier in 1970.
Magnetic refrigeration, or adiabatic demagnetization, is a cooling technology based on the magnetocaloric effect, an intrinsic property of magnetic solids. The refrigerant is often a paramagnetic salt, such as cerium magnesium nitrate. The active magnetic dipoles in this case are those of the electron shells of the paramagnetic atoms.
Common absorption refrigerators use a refrigerant with a very low boiling point (less than −18 °C (0 °F)) just like compressor refrigerators.Compression refrigerators typically use an HCFC or HFC, while absorption refrigerators typically use ammonia or water and need at least a second fluid able to absorb the coolant, the absorbent, respectively water (for ammonia) or brine (for water).
A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics.
A magnetohydrodynamic generator (MHD generator) is a magnetohydrodynamic converter that transforms thermal energy and kinetic energy directly into electricity.An MHD generator, like a conventional generator, relies on moving a conductor through a magnetic field to generate electric current.
The president's mass deportation plans could funnel huge profits to private prison companies like Geo and CoreCivic.
The refrigeration process uses a mixture of two isotopes of helium: helium-3 and helium-4.When cooled below approximately 870 millikelvins, the mixture undergoes spontaneous phase separation to form a 3 He-rich phase (the concentrated phase) and a 3 He-poor phase (the dilute phase).