Search results
Results From The WOW.Com Content Network
The load line diagram at right is for a resistive load in a common emitter circuit. The load line shows how the collector load resistor (R L) constrains the circuit voltage and current. The diagram also plots the transistor's collector current I C versus collector voltage V CE for different values of base current I base.
Parallel resistance is illustrated by the circulatory system. Each organ is supplied by an artery that branches off the aorta. The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries ...
The circuit diagram for a simple capacitor voltage transformer In its most basic form, the device consists of three parts: a two capacitor voltage divider across which the transmission line, an inductive element to tune the device to the line frequency, and a voltage transformer to isolate and further step down the voltage for metering devices ...
A voltmeter is optional since the applied voltage is the same as the voltmeter reading. Now with the help of a variac, the applied voltage is slowly increased until the ammeter gives a reading equal to the rated current of the HV side. After reaching the rated current of the HV side, all three instruments reading (Voltmeter, Ammeter, and ...
The output voltage of a voltage divider will vary according to the electric current it is supplying to its external electrical load. The effective source impedance coming from a divider of Z 1 and Z 2, as above, will be Z 1 in parallel with Z 2 (sometimes written Z 1 // Z 2), that is: (Z 1 Z 2) / (Z 1 + Z 2) = HZ 1.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
An electrostatic voltmeter uses the attraction force between two charged surfaces to create a deflection of a pointer directly calibrated in volts. Since the attraction force is the same regardless of the polarity of the charged surfaces (as long as the charge is opposite), the electrostatic voltmeter can measure DC voltages of either polarity.
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel . It usually has a high resistance so that it takes negligible current from the circuit.