Search results
Results From The WOW.Com Content Network
In computational chemistry, post–Hartree–Fock [1] [2] (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are ...
The first term in the above expansion is normally the Hartree–Fock determinant. The other CSFs can be characterised by the number of spin orbitals that are swapped with virtual orbitals from the Hartree–Fock determinant. If only one spin orbital differs, we describe this as a single excitation determinant.
Print/export Download as PDF; Printable version; In other projects ... Pages in category "Post-Hartree–Fock methods" The following 5 pages are in this category, out ...
Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate (e.g., for molecular ground states which are quasi-degenerate with low-lying excited states or in bond-breaking situations).
Coupled cluster (CC) is a numerical technique used for describing many-body systems.Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics.
Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy, with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early ...
The Hartree–Fock electronic wave function is then the Slater determinant constructed from these orbitals. Following the basic postulates of quantum mechanics, the Hartree–Fock wave function can then be used to compute any desired chemical or physical property within the framework of the Hartree–Fock method and the approximations employed.
Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry.It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order.