When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    Thus the interior of a metal is filled up with a large number of unattached electrons that travel aimlessly around like a crowd of displaced persons. When a metal wire is subjected to electric force applied on its opposite ends, these free electrons rush in the direction of the force, thus forming what we call an electric current.

  3. Slater–Pauling rule - Wikipedia

    en.wikipedia.org/wiki/Slater–Pauling_rule

    The basic rule given above makes several approximations. One simplification is rounding to the nearest integer. Because we are describing the number of electrons in a band using an average value, the s and d shells can be filled to non-integer numbers of electrons, allowing the Slater–Pauling rule to give more accurate predictions.

  4. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...

  5. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant. In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution of the thermal conductivity (κ) to the electrical conductivity (σ) of a metal is proportional to the temperature ...

  6. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and

  7. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    The combination of two phenomena gives rise to metallic bonding: delocalization of electrons and the availability of a far larger number of delocalized energy states than of delocalized electrons. [clarification needed] The latter could be called electron deficiency.

  8. Volta potential - Wikipedia

    en.wikipedia.org/wiki/Volta_potential

    The Volta potential (also called Volta effect, [1] Volta potential difference, contact potential difference, outer potential difference, Δψ, or "delta psi") in electrochemistry, is the electrostatic potential difference between two metals (or one metal and one electrolyte) that are in contact and are in thermodynamic equilibrium.

  9. Symplectic group - Wikipedia

    en.wikipedia.org/wiki/Symplectic_group

    For n > 1, there are additional conditions, i.e. Sp(2n, F) is then a proper subgroup of SL(2n, F). Typically, the field F is the field of real numbers R or complex numbers C. In these cases Sp(2n, F) is a real or complex Lie group of real or complex dimension n(2n + 1), respectively. These groups are connected but non-compact.