Search results
Results From The WOW.Com Content Network
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide. Some commonly industrially produced Koch acids include pivalic acid , 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [ 1 ]
A 3–5% aqueous solution of KOH is applied to the flesh of a mushroom and the researcher notes whether or not the color of the flesh changes. Certain species of gilled mushrooms, boletes, polypores, and lichens [25] are identifiable based on this color-change reaction. [26]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
A 3–10% solution of potassium hydroxide (KOH) gives a color change in some species of mushrooms: In Agaricus, some species such as A. xanthodermus turn yellow with KOH, many have no reaction, and A. subrutilescens turns green. Distinctive change occurs for some species of Cortinarius and Boletes
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Where HV is the hydroxyl value; V B is the amount (ml) potassium hydroxide solution required for the titration of the blank; V acet is the amount (ml) of potassium hydroxide solution required for the titration of the acetylated sample; W acet is the weight of the sample (in grams) used for acetylation; N is the normality of the titrant; 56.1 is ...
The resulting HCl can be reused in oxychlorination reaction. Thermally induced dehydrofluorinations are employed in the production of fluoroolefins and hydrofluoroolefins . One example is the preparation of 1,2,3,3,3-pentafluoropropene from 1,1,2,3,3,3-hexafluoropropane:
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis