When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Atomicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Atomicity_(chemistry)

    They are typically designated as having an atomicity of 2. The atomicity of homonuclear molecule can be derived by dividing the molecular weight by the atomic weight. For example, the molecular weight of oxygen is 31.999, [ 3 ] while its atomic weight is 15.879; [ 4 ] therefore, its atomicity is approximately 2 (31.999/15.879 ≈ 2).

  3. Neon - Wikipedia

    en.wikipedia.org/wiki/Neon

    This is an accepted version of this page This is the latest accepted revision, reviewed on 5 March 2025. Chemical element with atomic number 10 (Ne) This article is about the chemical element. For other uses, see Neon (disambiguation). Chemical element with atomic number 10 (Ne) Neon, 10 Ne Neon Appearance colorless gas exhibiting an orange-red glow when placed in an electric field Standard ...

  4. Monatomic gas - Wikipedia

    en.wikipedia.org/wiki/Monatomic_gas

    One mole of atoms contains an Avogadro number of atoms, so that the energy of one mole of atoms of a monatomic gas is =, where R is the gas constant. In an adiabatic process , monatomic gases have an idealised γ -factor ( C p / C v ) of 5/3, as opposed to 7/5 for ideal diatomic gases where rotation (but not vibration at room temperature) also ...

  5. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    These tables list values of molar ionization energies, measured in kJ⋅mol −1.This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions.

  6. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    The Sackur–Tetrode constant, written S 0 /R, is equal to S/k B N evaluated at a temperature of T = 1 kelvin, at standard pressure (100 kPa or 101.325 kPa, to be specified), for one mole of an ideal gas composed of particles of mass equal to the atomic mass constant (m u = 1.660 539 068 92 (52) × 10 −27 kg ‍ [5]).

  7. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    Buckingham proposed this as a simplification of the Lennard-Jones potential, in a theoretical study of the equation of state for gaseous helium, neon and argon. [1] As explained in Buckingham's original paper and, e.g., in section 2.2.5 of Jensen's text, [2] the repulsion is due to the interpenetration of the closed electron shells.

  8. Noble gas compound - Wikipedia

    en.wikipedia.org/wiki/Noble_gas_compound

    Recently, [when?] xenon has been shown to produce a wide variety of compounds of the type XeO n X 2 where n is 1, 2 or 3 and X is any electronegative group, such as CF 3, C(SO 2 CF 3) 3, N(SO 2 F) 2, N(SO 2 CF 3) 2, OTeF 5, O(IO 2 F 2), etc.; the range of compounds is impressive, similar to that seen with the neighbouring element iodine ...

  9. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    One example is that someone can use the charge of an ion to find the oxidation number of a monatomic ion. For example, the oxidation number of + is +1. This helps when trying to solve oxidation questions. A charge number also can help when drawing Lewis dot structures. For example, if the structure is an ion, the charge will be included outside ...