When.com Web Search

  1. Ads

    related to: choosing the best trendline for your data analytics strategy

Search results

  1. Results From The WOW.Com Content Network
  2. Trend line (technical analysis) - Wikipedia

    en.wikipedia.org/.../Trend_line_(technical_analysis)

    When establishing trend lines it is important to choose a chart based on a price interval period that aligns with your trading strategy. Short term traders tend to use charts based on interval periods, such as 1 minute (i.e. the price of the security is plotted on the chart every 1 minute), with longer term traders using price charts based on ...

  3. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  4. Trend analysis - Wikipedia

    en.wikipedia.org/wiki/Trend_analysis

    If the trend can be assumed to be linear, trend analysis can be undertaken within a formal regression analysis, as described in Trend estimation. If the trends have other shapes than linear, trend testing can be done by non-parametric methods, e.g. Mann-Kendall test, which is a version of Kendall rank correlation coefficient .

  5. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre ...

  6. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The goal of log-linear analysis is to determine which model components are necessary to retain in order to best account for the data. Model components are the number of main effects and interactions in the model. For example, if we examine the relationship between three variables—variable A, variable B, and variable C—there are seven model ...

  7. Business analytics - Wikipedia

    en.wikipedia.org/wiki/Business_analytics

    The difficulty in ensuring data quality is integrating and reconciling data across different systems, and then deciding what subsets of data to make available. [3] Previously, analytics was considered a type of after-the-fact method of forecasting consumer behavior by examining the number of units sold in the last quarter or the last year. This ...

  8. Prescriptive analytics - Wikipedia

    en.wikipedia.org/wiki/Prescriptive_analytics

    Prescriptive analytics is the third and final phase of business analytics, which also includes descriptive and predictive analytics. [2] [3] Referred to as the "final frontier of analytic capabilities", [4] prescriptive analytics entails the application of mathematical and computational sciences and suggests decision options for how to take advantage of the results of descriptive and ...

  9. Econometrics - Wikipedia

    en.wikipedia.org/wiki/Econometrics

    Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. [1] More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference."