Search results
Results From The WOW.Com Content Network
Therefore, a molecule's dipole is an electric dipole with an inherent electric field that should not be confused with a magnetic dipole, which generates a magnetic field. The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in the non- SI unit ...
The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.
The bond dipole is modeled as δ + — δ – with a distance d between the partial charges δ + and δ –. It is a vector, parallel to the bond axis, pointing from minus to plus, [6] as is conventional for electric dipole moment vectors. Chemists often draw the vector pointing from plus to minus. [7]
With this definition the dipole direction tends to align itself with an external electric field (and note that the electric flux lines produced by the charges of the dipole itself, which point from positive charge to negative charge, then tend to oppose the flux lines of the external field). Note that this sign convention is used in physics ...
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
Unlike the expressions in the previous section, this limit is correct for the internal field of the dipole. If a magnetic dipole is formed by taking a "north pole" and a "south pole", bringing them closer and closer together but keeping the product of magnetic pole-charge and distance constant, the limiting field is
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.