When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Artin's_conjecture_on...

    Let a be an integer that is not a square number and not −1. Write a = a 0 b 2 with a 0 square-free. Denote by S(a) the set of prime numbers p such that a is a primitive root modulo p. Then the conjecture states S(a) has a positive asymptotic density inside the set of primes. In particular, S(a) is infinite.

  3. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    A number n is odd if there is an integer k such that n = 2k + 1. One way to prove that zero is not odd is by contradiction: if 0 = 2k + 1 then k = −1/2, which is not an integer. [15] Since zero is not odd, if an unknown number is proven to be odd, then it cannot be zero.

  4. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [1] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    If ⁠ ⁠ really is prime, it will always answer yes, but if ⁠ ⁠ is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2. [132] If this test is repeated ⁠ n {\displaystyle n} ⁠ times on the same number, the probability that a composite number could pass the test every time is at most ⁠ 1 / 2 ...

  6. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Chen's theorem, another weakening of Goldbach's conjecture, proves that for all sufficiently large n, = + where p is prime and q is either prime or semiprime. [note 1] Bordignon, Johnston, and Starichkova, [5] correcting and improving on Yamada, [6] proved an explicit version of Chen's theorem: every even number greater than , is the sum of a ...

  7. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    The prime number theorem asserts that an integer m selected at random has roughly a ⁠ 1 / ln m ⁠ chance of being prime. Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠.

  8. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    We continue recursively in this manner until we reach a number known to be prime, such as 2. We end up with a tree of prime numbers, each associated with a witness a. For example, here is a complete Pratt certificate for the number 229: 229 (a = 6, 229 − 1 = 2 2 × 3 × 19), 2 (known prime), 3 (a = 2, 3 − 1 = 2), 2 (known prime),

  9. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.