Search results
Results From The WOW.Com Content Network
Lone pairs in ammonia (A), water (B), and hydrogen chloride (C) A single lone pair can be found with atoms in the nitrogen group, such as nitrogen in ammonia. Two lone pairs can be found with atoms in the chalcogen group, such as oxygen in water. The halogens can carry three lone pairs, such as in hydrogen chloride.
A halogen bond is almost collinear with the halogen atom's other, conventional bond, but the geometry of the electron-charge donor may be much more complex.. Multi-electron donors such as ethers and amines prefer halogen bonds collinear with the lone pair and donor nucleus.
However, there were exceptional cases. For example, when the central atom is heavy and has seven lone pairs, such as [BrF 6] − and [IF 6] −, they have a regular octahedral arrangement of fluoride ligands instead of a distorted one due to the presence of a stereochemically inert lone pair.
In chemistry, sigma hole interactions (or σ-hole interactions) are a family of intermolecular forces that can occur between several classes of molecules and arise from an energetically stabilizing interaction between a positively-charged site, termed a sigma hole, and a negatively-charged site, typically a lone pair, on different atoms that are not covalently bonded to each other. [1]
Examples of T-shaped molecules are the halogen trifluorides, such as ClF 3. [ 1 ] According to VSEPR theory , T-shaped geometry results when three ligands and two lone pairs of electrons are bonded to the central atom, written in AXE notation as AX 3 E 2 .
A Lewis base is often a Brønsted–Lowry base as it can donate a pair of electrons to H +; [11] the proton is a Lewis acid as it can accept a pair of electrons. The conjugate base of a Brønsted–Lowry acid is also a Lewis base as loss of H + from the acid leaves those electrons which were used for the A—H bond as a lone pair on the ...
This regioselectivity is rationalized by the resonance stabilization of a neighboring carbocation by a lone pair on the initially installed halogen. Depending on relative rates of the two steps, it may be difficult to stop at the first stage, and often, mixtures of the mono and bis hydrohalogenation products are obtained.
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.