When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]

  3. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .

  4. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations.

  5. Category:Calculus of variations - Wikipedia

    en.wikipedia.org/.../Category:Calculus_of_variations

    العربية; বাংলা; Башҡортса; Беларуская; Беларуская (тарашкевіца) Bosanski; Čeština; Dansk; Deutsch

  6. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integrand L of a functional, if a function f is varied by adding to it another function δf that is arbitrarily small, and the resulting integrand is expanded in powers of δf , the coefficient of ...

  7. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

  8. List of variational topics - Wikipedia

    en.wikipedia.org/wiki/List_of_variational_topics

    This is a list of variational topics in from mathematics and physics.See calculus of variations for a general introduction.. Action (physics) Averaged Lagrangian; Brachistochrone curve

  9. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.