When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  5. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  7. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent to the field vector at each point.

  8. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field v = ( x y , y z , z x ) {\displaystyle {\bf {v}}=(xy,yz,zx)} satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a ...

  9. Vector potential - Wikipedia

    en.wikipedia.org/wiki/Vector_potential

    A generalization of this theorem is the Helmholtz decomposition theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and an irrotational vector field. By analogy with the Biot-Savart law , A ″ ( x ) {\displaystyle \mathbf {A''} (\mathbf {x} )} also qualifies as a vector potential for v ...