Search results
Results From The WOW.Com Content Network
Plot of the ReLU (blue) and GELU (green) functions near x = 0. In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function [1] [2] is an activation function defined as the non-negative part of its argument, i.e., the ramp function:
Download QR code; Print/export ... PyTorch is a machine learning library based on the Torch library, [4] [5 ... ReLU (), # ReLU is one of many activation functions ...
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
The swish paper was then updated to propose the activation with the learnable parameter β. In 2017, after performing analysis on ImageNet data, researchers from Google indicated that using this function as an activation function in artificial neural networks improves the performance, compared to ReLU and sigmoid functions. [ 1 ]
Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.
Radial basis function (RBF) networks typically have three layers: an input layer, a hidden layer with a non-linear RBF activation function and a linear output layer. The input can be modeled as a vector of real numbers x ∈ R n {\displaystyle \mathbf {x} \in \mathbb {R} ^{n}} .
The convex conjugate (specifically, the Legendre transform) of the softplus function is the negative binary entropy (with base e).This is because (following the definition of the Legendre transform: the derivatives are inverse functions) the derivative of softplus is the logistic function, whose inverse function is the logit, which is the derivative of negative binary entropy.