Search results
Results From The WOW.Com Content Network
The neutrons and protons in a nucleus form a quantum mechanical system according to the nuclear shell model. Protons and neutrons of a nuclide are organized into discrete hierarchical energy levels with unique quantum numbers. Nucleon decay within a nucleus can occur if allowed by basic energy conservation and quantum mechanical constraints.
For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: p + + e − → n + ν e. The process is reversible; neutrons can convert back to protons through beta decay, a common form of radioactive decay. In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes.
Since protons and neutrons are both baryons, the mass number A is identical with the baryon number B of the nucleus (and also of the whole atom or ion). The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N ...
Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...
Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes largerIsotopes are nuclides with the same number of protons but differing numbers of neutrons; that is, they have the same atomic number and are therefore the same chemical element.
The neutron–proton ratio (N/Z ratio or nuclear ratio) of an atomic nucleus is the ratio of its number of neutrons to its number of protons.Among stable nuclei and naturally occurring nuclei, this ratio generally increases with increasing atomic number. [1]
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .
Protons and neutrons are best known in their role as nucleons, i.e., as the components of atomic nuclei, but they also exist as free particles. Free neutrons are unstable, with a half-life of around 13 minutes, but they have important applications (see neutron radiation and neutron scattering ).