Search results
Results From The WOW.Com Content Network
Bin-packing with fragmentation or fragmentable object bin-packing is a variant of the bin packing problem in which it is allowed to break items into parts and put each part separately on a different bin. Breaking items into parts may allow for improving the overall performance, for example, minimizing the number of total bin.
Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers ...
For each item from largest to smallest, find the first bin into which the item fits, if any. If such a bin is found, put the new item in it. Otherwise, open a new empty bin put the new item in it. In short: FFD orders the items by descending size, and then calls first-fit bin packing. An equivalent description of the FFD algorithm is as follows.
First-fit (FF) is an online algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins ...
Best-fit is an online algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins is an ...
The strip packing problem contains the bin packing problem as a special case when all the items have the same height 1. For this reason, it is strongly NP-hard, and there can be no polynomial time approximation algorithm that has an approximation ratio smaller than 3 / 2 {\displaystyle 3/2} unless P = N P {\displaystyle P=NP} .
Next-fit-decreasing (NFD) is an algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of ...
The bin packing problem is a problem of packing items of different sizes into bins of identical capacity, such that the total number of bins is as small as possible. Finding the optimal solution is computationally hard. Karmarkar and Karp devised an algorithm that runs in polynomial time and finds a solution with at most + ( ()) bins, where ...