Ads
related to: translate phrases into algebraic statements calculator
Search results
Results From The WOW.Com Content Network
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
In computer algebra, formulas are viewed as expressions that can be evaluated as a Boolean, depending on the values that are given to the variables occurring in the expressions. For example 8 x − 5 ≥ 3 {\displaystyle 8x-5\geq 3} takes the value false if x is given a value less than 1, and the value true otherwise.
Some algebraic expressions take the form of statements that relate two expressions to one another. An equation is a statement formed by comparing two expressions, saying that they are equal. This can be expressed using the equals sign ( = {\displaystyle =} ), as in 5 x 2 + 6 x = 3 y + 4 {\displaystyle 5x^{2}+6x=3y+4} .
Casio V.P.A.M. calculators are scientific calculators made by Casio which use Casio's Visually Perfect Algebraic Method (V.P.A.M.), Natural Display or Natural V.P.A.M. input methods. V.P.A.M. is an infix system for entering mathematical expressions, used by Casio in most of its current scientific calculators.
This shows that substituting for the terms in a statement isn't always the same as letting the terms from the statement equal the substituted terms. In this situation it's clear that if we substitute an expression a into the a term of the original equation, the a substituted does not refer to the a in the statement "ab = 0 implies a = 0 or b = 0."
An algebraic equation is univariate if it involves only one variable. On the other hand, a polynomial equation may involve several variables, in which case it is called multivariate (multiple variables, x, y, z, etc.). For example, + = is a univariate algebraic (polynomial) equation with integer coefficients and
Other early handheld calculators with symbolic algebra capabilities included the Texas Instruments TI-89 series and TI-92 calculator, and the Casio CFX-9970G. [2] The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a copyleft version of Macsyma is called Maxima. Reduce became free software in ...
The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.