Search results
Results From The WOW.Com Content Network
Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...
A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1] It was devised by Whitney K. Newey and Kenneth D. West in 1987, although there are a number of later variants.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
For several parameters, the covariance matrices and information matrices are elements of the convex cone of nonnegative-definite symmetric matrices in a partially ordered vector space, under the Loewner (Löwner) order. This cone is closed under matrix addition and inversion, as well as under the multiplication of positive real numbers and ...
The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.
The covariance-free approach avoids the np 2 operations of explicitly calculating and storing the covariance matrix X T X, instead utilizing one of matrix-free methods, for example, based on the function evaluating the product X T (X r) at the cost of 2np operations.
When the two random vectors are the same, the cross-covariance matrix is referred to as covariance matrix. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values.
The dual form that arises in the creation of a kernel allows us to mathematically formulate a version of PCA in which we never actually solve the eigenvectors and eigenvalues of the covariance matrix in the ()-space (see Kernel trick).