Search results
Results From The WOW.Com Content Network
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written
Another way of saying this is that a unitary matrix is the exponential of i times a Hermitian matrix, so that the additive conserved real quantity, the phase, is only well-defined up to an integer multiple of 2π. Only when the unitary symmetry matrix is part of a family that comes arbitrarily close to the identity are the conserved real ...
The complex Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as [1] [2] [3] = for some unitary matrix Q (so that the inverse Q −1 is also the conjugate transpose Q* of Q), and some upper triangular matrix U.
Specifically, the singular value decomposition of an complex matrix is a factorization of the form =, where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition ...
Then a Givens rotation G can be chosen using the i and j>i rows and columns so as to make the ji element of the product matrix G D A be zero. Since a product of unitary matrices is unitary, the product matrix G D is unitary and so is any product of such matrix pair products.
A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius function.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...